If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30-3x^2=0
a = -3; b = 0; c = +30;
Δ = b2-4ac
Δ = 02-4·(-3)·30
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*-3}=\frac{0-6\sqrt{10}}{-6} =-\frac{6\sqrt{10}}{-6} =-\frac{\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*-3}=\frac{0+6\sqrt{10}}{-6} =\frac{6\sqrt{10}}{-6} =\frac{\sqrt{10}}{-1} $
| -13=4-3k-2k | | -90=-3m | | (5c-3)/(c-5)=0 | | 8y-10y-7=7 | | 3/4(x-3)=2 | | 0=(5c-3)/(c-5) | | -0.56(n+8)=-2.8 | | 2^2^v^+^2=^3^v^+^3 | | 1.6z+3.2=-3.2 | | 3(2x+)=6(x+4)-3 | | 52b+2=25 | | 10a–2(a+3)=5a | | 27=3+2(t+4) | | 32n=243 | | 19=3m-7 | | 1.6z+3.2=3.2 | | 3z-8=z=4 | | 5x+50+1=90 | | 1+4r=17 | | r/7+2=-1 | | 22v+2=23v+3 | | 20=m+5 | | 4x+12=5x+30 | | 5b^2-3b-8=0 | | 6(x+9=6x-54+x | | 5n-2=125 | | X3+x2-12=12 | | 8=40+4x | | 5(0)+7y=50 | | 1)3+5r=−47 | | -5(x+2)=-9x+26 | | 13/5=65/t |